Funções

Definição

Definimos função como a relação entre dois ou mais conjuntos, estabelecida por uma lei de formação, isto é, uma regra geral. Os elementos de um grupo devem ser relacionados com os elementos do outro grupo, através dessa lei. Por exemplo, vamos considerar o conjunto A formado pelos seguintes elementos {–3, –2, 0, 2, 3}, que irão possuir representação no conjunto B de acordo com a seguinte lei de formação y = x².



Aplicada a lei de formação, temos os seguintes pares ordenados: {(–3, 9), (–1, 1), (0, 0), (2, 4), (4, 16)}. Essa relação também pode ser representada com a utilização de diagramas de flechas, relacionando cada elemento do conjunto A com os elementos do conjunto B. Observe:

No diagrama é possível observar com mais clareza que todos os elementos de A estão ligados a pelo menos um elemento de B, então podemos dizer que essa relação é uma função. Dessa forma o domínio é dado pelos elementos do conjunto A, e a imagem, pelos elementos do conjunto B. 



As funções possuem diversas aplicações no cotidiano, sempre relacionando grandezas, valores, índices, variações entre outras situações. Por exemplo, a inflação é medida através da função que relaciona os preços atuais com os preços anteriores, dentro de um determinado período, caso ocorra variação para mais dizemos que houve inflação, e havendo variação para menos, denominamos deflação. A distância percorrida por um veículo depende da quantidade de combustível presente no tanque. Ciências como a Física, a Química e a Biologia utilizam em seus cálculos as propriedades das funções para demonstrarem a ocorrência de determinados fenômenos. Dessa forma, é muito importante obter o conhecimento adequado sobre as propriedades e definições das funções matemáticas. 


Função de 1º grau

Definição

Chama-se função polinomial do 1º grau, ou função afim, a qualquer função de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a0.
Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante.

Veja alguns exemplos de funções polinomiais do 1º grau:

 f(x) = 5x - 3, onde a = 5 e b = - 3

 f(x) = -2x - 7, onde a = -2 e b = - 7
 f(x) = 11x, onde a = 11 e b = 0


Gráfico

O gráfico de uma função polinomial do 1º grau,  y = ax + b, com a0, é uma reta oblíqua aos eixos Oe Oy.

Exemplo:
Vamos construir o gráfico da função y = 3x - 1:

Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua:

a)    Para   x = 0, temos   y = 3 · 0 - 1 = -1; portanto, um ponto é (0, -1).

b)    Para   y = 0, temos   0 = 3x - 1; portanto,  e outro ponto é .
Marcamos os pontos (0, -1) e  no plano cartesiano e ligamos os dois com uma reta.
xy
0-1
0


Já vimos que o gráfico da função afim y = ax + b é uma reta.

O coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox.

O termo constante, b, é chamado coeficiente linear da reta. Para x = 0, temos y = a · 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo Oy.

Zero e Equação do 1º Grau

Chama-se zero ou raiz da função polinomial do 1º grau f(x) = ax + b, a0, o número real x tal que  f(x) =0.

Temos:

Vejamos alguns exemplos
:f(x) = 0        ax + b = 0        
  1. Obtenção do zero da função f(x) = 2x - 5:
                                        f(x) = 0        2x - 5 = 0        
  2. Cálculo da raiz da função g(x) = 3x + 6:
                                        g(x) = 0        3x + 6 = 0        x = -2
       
  3. Cálculo da abscissa do ponto em que o gráfico de h(x) = -2x + 10 corta o eixo das abicissas:
    O ponto em que o gráfico corta o eixo dos x é aquele em que h(x) = 0; então:
        h(x) = 0        -2+ 10 = 0        x = 5

Crescimento e decrescimento

Consideremos a função do 1º grau y = 3x - 1. Vamos atribuir valores cada vez maiores a x e observar o que ocorre com y:
x-3-2-10123
y-10-7-4-1258
Notemos que, quando aumentos o valor de x, os correspondentes
valores de y também aumentam. Dizemos, então que a

função y = 3x - 1 é crescente.
Observamos novamente seu gráfico:
Regra geral:
a função do 1º grau f(x) = ax + b é crescente quando o coeficiente de x é positivo (a > 0);

a função do 1º grau f(x) = ax + b é decrescente quando o coeficiente de x é negativo (a < 0);

Justificativa:
  • para a > 0: se x1 < x2, então ax1 < ax2. Daí, ax1 + b < ax2 + b, de onde vem f(x1) < f(x2).
  • para a < 0: se x1 < x2, então ax1 > ax2. Daí, ax1 + b > ax2 + b, de onde vem f(x1) > f(x2).
Sinal

Estudar o sinal de uma qualquer y = f(x) é determinar os valor de x para os quais y é positivo, os valores de x para os quais y é zero e os valores de x para os quais y é negativo.

Consideremos  uma função afim y = f(x) = ax + b vamos estudar seu sinal. Já vimos que essa função se anula pra raiz . Há dois casos possíveis:

  1º) a > 0 (a função é crescente)
         y > 0       ax + b > 0         x > 

Conclusão: y é positivo para valores de x maiores que a raiz; y é negativo para valores de x menores que a raiz         y < 0      ax + b < 0         x < 
2º) a < 0 (a função é decrescente)
          y > 0   ax + b > 0            x < 
         y < 0   ax + b < 0        x > 

Conclusão: y é positivo para valores de x menores que a raiz; y é  negativo para valores de x maiores que a raiz.


Fonte: Só Matemática.


AULAS SOBRE O CONCEITO DE FUNÇÃO E FUNÇÃO DO PRIMEIRO GRAU


Conceitos Básicos:


Função do Primeiro Grau:



Função Quadrática
  
Definição
    
Chama-se função quadrática, ou função polinomial do 2º grau, qualquer função f de IR em IR dada por uma lei da forma f(x) = ax2 + bx + c, onde a, b e c são números reais e a 0.
    Vejamos alguns exemplos de função quadráticas:
  1. f(x) = 3x2 - 4x  + 1, onde a = 3, b = - 4 e c = 1
  2. f(x) = x2 -1, onde a = 1, b = 0 e c = -1
  3. f(x) = 2x2 + 3x + 5, onde a = 2, b = 3 e c = 5
  4. f(x) = - x2 + 8x, onde a = 1, b = 8 e c = 0
  5. f(x) = -4x2, onde a = - 4, b = 0 e c = 0

Gráfico

O gráfico de uma função polinomial do 2º grau, y = ax2 + bx + c, com a 0, é uma curva chamada parábola.
Exemplo:
Vamos construir o gráfico da função y = x2 + x:
Primeiro atribuímos a x alguns valores, depois calculamos o valor correspondente de y e, em seguida, ligamos os pontos assim obtidos.
xy
-36
-22
-10
00
12
26
    Observação:
   Ao construir o gráfico de uma função quadrática y = ax2 + bx + c, notaremos sempre que:
  • se   a > 0, a parábola tem a concavidade voltada para cima;
  • se   a < 0, a parábola tem a concavidade voltada para baixo;

Zero e Equação do 2º Grau

Chama-se zeros ou raízes da função polinomial do 2º grau f(x) = ax2 + bx + c , a 0, os números reais x tais que f(x) = 0.
Então as raízes da função f(x) = ax2 + bx + c são as soluções da equação do 2º grau ax2 + bx + c = 0, as quais são dadas pela chamada fórmula de Bhaskara:
    Temos:
                    
Observação
A quantidade de raízes reais de uma função quadrática depende do valor obtido para o radicando ,  chamado discriminante, a saber:
  • quando  é positivo, há duas raízes reais e distintas;
  • quando  é zero, há só uma raiz real;
  • quando  é negativo, não há raiz real.

Coordenadas do vértice da parábola

Quando a > 0, a parábola tem concavidade voltada para cima e um ponto de mínimo V; quando a < 0, a parábola tem concavidade voltada para baixo e um ponto de máximo V
Em qualquer caso, as coordenadas de V são . Veja os gráficos:

Imagem

O conjunto-imagem Im da função y = ax2 + bx + c,  0, é o conjunto dos valores que y pode assumir. Há duas possibilidades:
1ª - quando a > 0,
a > 0

2ª quando a < 0,
a < 0



Construção da Parábola

É possível construir o gráfico de uma função do 2º grau sem montar a tabela de pares (x, y), mas seguindo apenas o roteiro de observação seguinte:
  1. O valor do coeficiente a define a concavidade da parábola;
  2. Os zeros definem os pontos em que a parábola intercepta o eixo dos x;
  3. O vértice V  indica o ponto de mínimo (se a > 0), ou máximo (se a< 0);
  4. A reta que passa por V e é paralela ao eixo dos  y é o eixo de simetria da parábola;
  5. Para x = 0 , temos y = a · 02 + b · 0 + c = c; então  (0, c) é o ponto em que a parábola corta o eixo dos y.
Sinal

Consideramos uma função quadrática y = f(x) = ax2 + bx + c e determinemos os valores de x para os quais y é negativo e os valores de x para os quais y é positivos.
Conforme o sinal do discriminante  = b2 - 4ac, podemos ocorrer os seguintes casos:
1º -   > 0
Nesse caso a função quadrática admite dois zeros reais distintos (x1  x2). a parábola intercepta o eixo Ox em dois pontos e o sinal da função é  o indicado nos gráficos abaixo:
quando a > 0
y > 0 (x < x1 ou x > x2)
y < 0 x1 < x < x2

quando a < 0
y > 0 x1 < x < x2
y < 0  (x < x1 ou x > x2)


2º -   = 0
quando a > 0

quando a < 0
 


3º -   < 0
quando a > 0
quando a < 0






Fonte : Só Matemática





                                        AULAS SOBRE FUNÇÃO DO SEGUNDO GRAU



Função do Segundo Grau




Um comentário: